Saturday, October 22, 2011

The Normal Flora

The Normal Flora

In a healthy human, the internal tissues, e.g. blood, brain, muscle, etc., are normally free of microorganisms. However, the surface tissues, i.e., skin and mucous membranes, are constantly in contact with environmental organisms and become readily colonized by various microbial species. The mixture of organisms regularly found at any anatomical site is referred to as the normal flora, except by researchers in the field who prefer the term "indigenous microbiota". The normal flora of humans consists of a few eucaryotic fungi and protists, but bacteria are the most numerous and obvious microbial components of the normal flora.

(1) The staphylococci and corynebacteria occur at every site listed. Staphylococcus epidermidis is highly adapted to the diverse environments of its human host. S. aureus is a potential pathogen. It is a leading cause of bacterial disease in humans. It can be transmitted from the nasal membranes of an asymptomatic carrier to a susceptible host.

S. epidermidis. Scanning EM. CDC.
(2) Many of the normal flora are either pathogens or opportunistic pathogens, The asterisks indicate members of the normal flora a that may be considered major pathogens of humans.

S. aureus. Gram stain.

(3) Streptococcus mutans is the primary bacterium involved in plaque formation and initiation of dental caries. Viewed as an opportunistic infection, dental disease is one of the most prevalent and costly infectious diseases in the United States.

Streptococcus mutans. Gram stain. CDC

(4) Enterococcus faecalis was formerly classified as Streptococcus faecalis. The bacterium is such a regular a component of the intestinal flora, that many European countries use it as the standard indicator of fecal pollution, in the same way we use E. coli in the U.S. In recent years, Enterococcus faecalis has emerged as a significant, antibiotic-resistant, nosocomial pathogen.

Vancomycin Resistant Enterococcus faecalis. Scanning E.M. CDC

(5) Streptococcus pneumoniae is present in the upper respiratory tract of about half the population. If it invades the lower respiratory tract it can cause pneumonia. Streptococcus pneumoniae causes 95 percent of all bacterial pneumonia.

Streptococcus pneumoniae. Direct fluorescent antibody stain. CDC.

(6) Streptococcus pyogenes refers to the Group A, Beta-hemolytic streptococci. Streptococci cause tonsillitis (strep throat), pneumonia, endocarditis. Some streptococcal diseases can lead to rheumatic fever or nephritis which can damage the heart and kidney.

Streptococcus pyogenes. Gram stain.

(7) Neisseria and other Gram-negative cocci are frequent inhabitants of the upper respiratory tract, mainly the pharynx. Neisseria meningitidis, an important cause of bacterial meningitis, can colonize as well, until the host can develop active immunity against the pathogen.

Neisseria meningitidis. Gram stain.

(8) While E. coli is a consistent resident of the small intestine, many other enteric bacteria may reside here as well, including Klebsiella, Enterobacter and Citrobacter. Some strains of E. coli are pathogens that cause intestinal infections, urinary tract infections and neonatal meningitis.

E. coli. Scanning E.M. Shirley Owens. Center for Electron Optics. Michigan State University.

(9) Pseudomonas aeruginosa is the quintessential opportunistic pathogen of humans that can invade virtually any tissue. It is a leading cause of hospital-acquired (nosocomial) Gram-negative infections, but its source is often exogenous (from outside the host).

Colonies of Pseudomonas aeruginosa growing on an agar plate. The most virulent Pseudomonas species produce mucoid colonies and green pigments such as this isolate.

(10) Haemophilus influenzae is a frequent secondary invader to viral influenza, and was named accordingly. The bacterium was the leading cause of meningitis in infants and children until the recent development of the Hflu type B vaccine.

Haemophilus influenzae. Gram stain.

(11) The greatest number of bacteria are found in the lower intestinal tract, specifically the colon and the most prevalent bacteria are the Bacteroides, a group of Gram-negative, anaerobic, non-sporeforming bacteria. They have been implicated in the initiation colitis and colon cancer.

Bacteroides fragilis. Gram stain.

(12) Bifidobacteria are Gram-positive, non-sporeforming, lactic acid bacteria. They have been described as "friendly" bacteria in the intestine of humans. Bifidobacterium bifidum is the predominant bacterial species in the intestine of breast-fed infants, where it presumably prevents colonization by potential pathogens. These bacteria are sometimes used in the manufacture of yogurts and are frequently incorporated into probiotics.

Bifidobacterium bifidum. Gram stain

(13) Lactobacilli in the oral cavity probably contribute to acid formation that leads to dental caries. Lactobacillus acidophilus colonizes the vaginal epithelium during child-bearing years and establishes the low pH that inhibits the growth of pathogens.

Lactobacillus species and a vaginal squaemous epithelial cell. CDC

(14) There are numerous species of Clostridium that colonize the bowel. Clostridium perfringens is commonly isolated from feces. Clostridium difficile may colonize the bowel and cause "antibiotic-induced diarrhea" or pseudomembranous colitis.

Clostridium perfringens. Gram stain.

(15) Clostridium tetani is included in the table as an example of a bacterium that is "transiently associated" with humans as a component of the normal flora. The bacterium can be isolated from feces in 0 - 25 percent of the population. The endospores are probably ingested with food and water, and the bacterium does not colonize the intestine.

Clostridium tetani. Gram stain.

(16) The corynebacteria, and certain related propionic acid bacteria, are consistent skin flora. Some have been implicated as a cause of acne. Corynebacterium diphtheriae, the agent of diphtheria, was considered a member of the normal flora before the widespread use of the diphtheria toxoid, which is used to immunize against the disease.

Corynebacterium diphtheriae. No longer a part of the normal flora.
Associations Between Humans and the Normal Flora

E. coli is the best known bacterium that regularly associates itself with humans, being an invariable component of the human intestinal tract. Even though E. coli is the most studied of all bacteria, and we know the exact location and sequence of 4,288 genes on its chromosome, we do not fully understand its ecological relationship with humans.

In fact, not much is known about the nature of the associations between humans and their normal flora, but they are thought to be dynamic interactions rather than associations of mutual indifference. Both host and bacteria are thought to derive benefit from each other, and the associations are, for the most part, mutualistic. The normal flora derive from their host a steady supply of nutrients, a stable environment, and protection and transport. The host obtains from the normal flora certain nutritional and digestive benefits, stimulation of the development and activity of immune system, and protection against colonization and infection by pathogenic microbes.

While most of the activities of the normal flora benefit their host, some of the normal flora are parasitic (live at the expense of their host), and some are pathogenic (capable of producing disease). Diseases that are produced by the normal flora in their host may be called endogenous diseases. Most endogenous bacterial diseases are opportunistic infections, meaning that the the organism must be given a special opportunity of weakness or let-down in the host defenses in order to infect. An example of an opportunistic infection is chronic bronchitis in smokers wherein normal flora bacteria are able to invade the weakened lung.

Sometimes the relationship between a member of the normal flora an its host cannot be deciphered. Such a relationship where there is no apparent benefit or harm to either organism during their association is referred to as a commensal relationship. Many of the normal flora that are not predominant in their habitat, even though always present in low numbers, are thought of as commensal bacteria. However, if a presumed commensal relationship is studied in detail, parasitic or mutualistic characteristics often emerge.

Tissue specificity

Most members of the normal bacterial flora prefer to colonize certain tissues and not others. This "tissue specificity" is usually due to properties of both the host and the bacterium. Usually, specific bacteria colonize specific tissues by one or another of these mechanisms.

1. Tissue tropism is the bacterial preference or predilection for certain tissues for growth. One explanation for tissue tropism is that the host provides essential nutrients and growth factors for the bacterium, in addition to suitable oxygen, pH, and temperature for growth.

Lactobacillus acidophilus, informally known as "Doderlein's bacillus" colonizes the vagina because glycogen is produced which provides the bacteria with a source of sugar that they ferment to lactic acid.

2. Specific adherence Most bacteria can colonize a specific tissue or site because they can adhere to that tissue or site in a specific manner that involves complementary chemical interactions between the two surfaces. Specific adherence involves biochemical interactions between bacterial surface components (ligands or adhesins) and host cell molecular receptors. The bacterial components that provide adhesins are molecular parts of their capsules, fimbriae, or cell walls. The receptors on human cells or tissues are usually glycoprotein molecules located on the host cell or tissue surface.

Figure 2. Specific adherence involves complementary chemical interactions between the host cell or tissue surface and the bacterial surface. In the language of medical microbiologist, a bacterial "adhesin" attaches covalently to a host "receptor" so that the bacterium "docks" itself on the host surface. The adhesins of bacterial cells are chemical components of capsules, cell walls, pili or fimbriae. The host receptors are usually glycoproteins located on the cell membrane or tissue surface.

Some examples of adhesins and attachment sites used for specific adherence to human tissues are described in the table below.
3. Biofilm formation
Some of the indigenous bacteria are able to construct biofilms on a tissue surface, or they are able to colonize a biofilm built by another bacterial species. Many biofilms are a mixture of microbes, although one member is responsible for maintaining the biofilm and may predominate.
The classic biofilm that involves components of the normal flora of the oral cavity is the formation of dental plaque on the teeth. Plaque is a naturally-constructed biofilm, in which the consortia of bacteria may reach a thickness of 300-500 cells on the surfaces of the teeth. These accumulations subject the teeth and gingival tissues to high concentrations of bacterial metabolites, which result in dental disease.
Coated from Kenneth Todar, Ph.D. Todar online Text book of bacteriology
Occupational Health Hazards in Hospitals, What Health Care Workers Should Know?

No comments: